Microrheological Coagulation Assay Exploiting Micromechanical Resonators.

نویسندگان

  • Francesco Padovani
  • James Duffy
  • Martin Hegner
چکیده

Rheological measurements in biological liquids yield insights into homeostasis and provide information on important molecular processes that affect fluidity. We present a fully automated cantilever-based method for highly precise and sensitive measurements of microliter sample volumes of human blood plasma coagulation (0.009 cP for viscosity range 0.5-3 cP and 0.0012 g/cm3 for density range 0.9-1.1 g/cm3). Microcantilever arrays are driven by a piezoelectric element, and resonance frequencies and quality factors of sensors that change over time are evaluated. A highly accurate approximation of the hydrodynamic function is introduced that correlates resonance frequency and quality factor of cantilever beams immersed in a fluid to the viscosity and density of that fluid. The theoretical model was validated using glycerol reference solutions. We present a surface functionalization protocol that allows minimization of unspecific protein adsorption onto cantilevers. Adsorption leads to measurement distortions and incorrect estimation of the fluid parameters (viscosity and density). Two hydrophilic terminated self-assembled monolayers (SAMs) sensor surfaces are compared to a hydrophobic terminated SAM coating. As expected, the hydrophobic modified surfaces induced the highest mass adsorption and could promote conformational changes of the proteins and subsequent abnormal biological activity. Finally, the activated partial thromboplastin time (aPTT) coagulation assay was performed, and the viscosity, density, and coagulation rate of human blood plasma were measured along with the standard coagulation time. The method could extend and improve current coagulation testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Micromechanical Electronic Filters

Third-order, micromechanical bandpass filters comprised of three folded-beam resonators coupled by flexural mode springs are demonstrated using an IC-compatible, polysilicon surface-micromachining technology. The use of quarter-wavelength coupling beams attached to resonators at their folding-trusses is shown to suppress passband distortion due to finite-mass nonidealities, which become increas...

متن کامل

Design and Fabrication of a Narrow-bandwidth Micromechanical Ring Filter using a Novel Process in UV-LIGA Technology

This paper presents the design and a new low-cost process for fabrication of a second-order micromechanical filter using UV-LIGA technology. The micromechanical filter consists of two identical bulk-mode ring resonators, mechanically coupled by a flexural-mode beam. A new lumped modeling approach is presented for the bulk-mode ring resonators and filter. The validity of the analytical derivatio...

متن کامل

CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators

Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by...

متن کامل

Design strategies for controlling damping in micromechanical and nanomechanical resonators

Damping is a critical design parameter for miniaturized mechanical resonators used in microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), optomechanical systems, and atomic force microscopy for a large and diverse set of applications ranging from sensing, timing, and signal processing to precision measurements for fundamental studies of materials science and quantum mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2017